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Abstract

Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is

used to study, analyze and, subsequently, model the role of small (subgrid) scales in the

mixing process. In particular, we attempt to model the dissipation of the large scale (su-

pergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts:

(i) the effect due to the interaction among the subgrid scales, C_'>; and, (ii) the effect due

to interaction between the supergrid and the subgrid scales, g_'<. Model comparison with

DNS data shows good agreement. This model is expected to be useful in the large eddy

simulations of scalar mixing and reaction.
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1 Introduction.

Large eddy simulation (LES) of turbulent mixing and reaction is a possible means of cal-

culating complex flows not amenable to the full direct numerical simulations (DNS) [1], [2].

In performing the LES of combustion, one is faced with a modeling problem not present in

the LES of Navier-Stokes equation, that of molecular mixing of scalars. Many combustion

problems of practical interest are of the non-premixed type. In non-premixed combustion,

scalar mixing, to a large extent, controls the rate of reactant conversion. Scalar mixing is pre-

dominantly a small-scale phenomenon occurring in scales not resolved in LES calculations.

Adequate modeling of the subgrid-scale mixing process is, hence, crucial to the success of

LES of reacting flows.

Consider the mixing and reaction of a scalar field ¢(x, t) in an incompressible turbulent

velocity field u(x, t):

0¢ 0¢ 02¢
0---/+ ua-- = + w(¢), (1)Oxa _°-_x_Ox_

where it0 and w are the molecular diffusivity and the chemical conversion rate of the scalar.

(Repeated indices imply summation.) In a turbulent flow, u_ and ¢ fields are made up of

the entire gamut of scales ranging from the energy containing scales to the dissipative scales.

In a high Reynolds number flow of complex geometry, a DNS calculation that resolves all of

the length and time scales represents a formidable task. Large eddy simulation entails the

calculation of the energy containing (called supergrid or resolved) scales only. The dissipative

and dispersive action of the small (called subgrid or unresolved) scales on the large scales

are accounted for by using suitable models.

The resolved field of any quantity A is obtained from its full field A by employing a filter

G of specified width A:

FA(x,t) = A(x',t)G(x- x', A)d3x '.
CO

(2)



The unresolved field, A', is given by

A'(x,t) = A(x, t)- 7A(x, t). (3)

When the filter is applied to the scalar evolution equation (1) we get

o-7+ <-- = ,0_ + w(¢) - (4)Oxa OxaOxo Ox_

The last two terms of the right hand side (RHS) of the above equation need closure modeling.

In the absence of reaction, the effect of the unresolved scales on the resolved scales manifests

only via the last term on the RHS which is usually modeled using a eddy viscosity type

model:

0¢
u_¢- _-z_7= -,rz---, (5)

aXa

where the eddy diffusivity coefficient #T can be obtained using the dynamic subgrid scale

modeling strategy outlined in [3] or the multiple scale elimination scheme [4].

The perils of modeling the filtered reaction term as

w[¢(x,t)] = w[¢(x,t)] (6)

are well known. Following the procedure used in [2], this term is expressed exactly as

_(x,t) f/=_= dew(_b)f(f;x,t), (7)

where _b represents the probability space variable corresponding to the scalar ¢ and the

function f is the 'large eddy pdf' (probability density function). If the function f is known,

equation (7) can be used to calculate the filtered conversion rate. There are two possible

ways of obtaining f. The computationally simpler option, in the same vein as the assumed-

pdf approach to turbulent combustion modeling, is to presume the form of f(_b; x, t) knowing

its first few moments at each location [1]. Most assumed pdf's require the specification of



the first two moments: in this case,¢ and ¢---2-.The filtered field ¢ is taken to be known; ¢--Y

may be determinedby solving its governingequation:

-3I- Ua--

Oxa - _°O_ Oxo
0¢ 0¢+ 2w(¢)¢-

0Xa"ax_
(s)

One of the terms that need modeling in the above equation (8) is the last term on the (RHS)

called the filtered scalar dissipation E¢. The second, and perhaps the more accurate, option

of obtaining the function f is to solve its governing equation [2]. The most important term in

the large-eddy pdf governing equation that needs closure modeling is the filtered conditional

diffusion. Most of the current models for the filtered conditional diffusion (eg., least mean

square estimation, mapping closure methodology) require that the filtered scalar dissipation

be known.

It is clear, then, that the role of subgrid scales during mixing, manifesting as the filtered

scalar dissipation, is a key process that needs closure modeling. Before attempting its model-

ing, it is important to understand the basic difference between statistical mean of a quantity

denoted by angular brackets (e.g., (¢2)) and its filtered counterpart represented by a over-

bar (_). The difference is most easily understood in isotropic turbulence where (¢2) and

0_:o0xo/ are constants in space, but their filtered counterparts exhibit spatial dependence.

In Fourier space, the spectrum of the statistical mean is a delta function at zero wavenum-

ber; whereas, the filtered quantity typically has a broad-based spectrum with the highest

amplitudes in the small wavenumbers (corresponding to large scales of motion). The lack

of a model that can adequately simulate the correct spatial (or, correspondingly, spectral)

behavior of the filtered quantity may nullify any advantage that the LES may have over the

traditional moment method of calculating mixing and reaction. The filtered scalar dissipa-

tion model currently used in literature [1] is an adaptation of the mean scalar dissipation

model used in traditional moment methods:

,f.¢ = C,¢,--, (9)
T



where C¢ is a constant of order unity and r is the time scale of turbulence. We will first

demonstrate that this model is inadequate for capturing certain important features of filtered

scalar dissipation observed in DNS data. We will then proceed to derive a more adequate

model expression.

As a first step, in this paper, only inert scalar mixing is considered. In practically all

combustion calculations to date, the form of the mean scalar dissipation model used is the

same for reacting as well as inert flows. Following suit, even though the current model is

developed only for LES of inert scalar mixing, it is recommended for use in reacting cases

also. In the discussions so far, G was permitted to be any positive-definite filter. The

derivation below is based on a spectral cut-off filter. We speculate that the functional form

may be valid for other filters also since the objective of most filters is indeed to separate the

large and small scales, even if only approximately.

In Section 2, we perform DNS of passive scalar mixing. We study the DNS data to

develop intuition into the behavior of ¢--7and 0e 0¢ The DNS data is also used to validate

some modeling assumptions and ultimately to evaluate the model itself. Section 3 contains

model development and validation. We conclude in Section 4 with a summary.

2 Numerical simulations and scalar analysis.

Direct numerical simulations of passive scalar mixing similar to that of Eswaran and Pope

[5] are performed. The initially non-premixed scalar field evolves in isotropic turbulence

that is held statistically stationary by small wavenumber forcing. The scalar field is initially

permitted values of only +1 or -1 with equal probability. The calculations are performed

on a 643 grid, and the Reynolds number based on the Taylor length scale is about 40. The

results presented in the paper are for a scalar of Prandtl number unity. Simulations were

also performed with non-unity Prandtl numbers and those results are consistent with the

presented results. The evolution of the scalar energy (E_) and dissipation (D¢ - k2E_(k))

4



spectra are presentedin figures la and lb, respectively. As can be seenfrom the figures,

due to the rather modestReynoldsnumber of the simulation, there is no inertial range or

separation of scales.The total number of energeticwavenumbersin a 643simulation with

spectral-cut-off de-aliasingis only about 30.

We areprimarily interestedin modelingthe filtered versionof the equation

0a 2 0¢ 2 02¢ 2 0¢ 0¢
+ua-- Oxo- .Oo o 2.o o (10)

Due to the presence of the gradient-squared term (last term on the RHS), the above equation

is different from that of a passive scalar. A complete understanding of the spectral behavior

of ¢2 and the gradient-squared term is important for modeling their filtered counterparts. By

writing equation (10) in spectral space and multiplying it through by the complex conjugate,

¢2"(k), we get the spectral budget for ¢2-energy:

0
[_-_ + 2/_0k2]E_2(k) = 2T¢2(k)- 4S(k), (11)

where,

Eel(k) = ¢2(k)¢2*(k) (12)
A

S(k) = poReal[ 0¢
0¢
0x (k)¢_*(k)] = Real[g¢(k)¢2*(k)].Ox_

In the above equations, superscript * denotes complex conjugate of the quantity and ^

indicates Fourier transform. For the sake of convenience, we do not use ^over ¢(k), C¢(k) or

¢2(k). The second term on the left hand side (LHS) of the above equation (11), D¢2(k) -

2Ftok2E¢2(k), represents the loss of ¢2-energy due to molecular action. The first term on the

RHS, T¢_(k), represents the net spectral transfer of ¢2-energy into wavennmber k due to

the cascading effect of the velocity field. The term S(k) represents ¢2-energy transfer into

wavenumber k due to the gradient-squared term.

5



2.1 Data analysis.

Behavior of E¢2 (k). The isotropic one-dimensional spectrum E¢2 (k) calculated from DNS

data is given in figure 2a. Most of the ¢2 energy is initially present at the large scales or

small wavenumbers. With passage of time, larger wavenumbers become more energetic at

the expense of the smaller wavenumbers. This transfer of ¢2 energy from large to small

scales could be due to the effect of the velocity field cascade term (T¢2(k)) and/or the

scalar gradient-squared term (S(k)). At the final stages of mixing, as is to be expected, the

spectrum decays over the entire wavenumber range.

Behavior of S(k). In physical space, the gradient-squared term always decreases the level

of ¢2 (equation 10) lowering its spatial mean. This means that, referring to equation (11), the

value of S(k = 0) has to be positive. The behavior of S(k) at other wavenumbers is not clear.

By depleting ¢2 at different rates at different physical locations, the gradient-squared term

may be capable of creating or augmenting spatial fluctuations in the ¢2 field. If the gradient-

squared term indeed creates or augments ¢2 fluctuations at a wavenumber, then it would be

a ¢2-energy source at that wavenumber. This means that, again referring to equation (11),

the value of S(k) at that wavenumber would be negative. In figure 2b, the function S(k)

(obtained by summing over all wavenumbers of a given magnitude k) is plotted as a function

of k(> 0) at various stages of mixing. Initially, S(k) is negative everywhere indicating that

the gradient-squared term acts as a ¢2-energy source at all wavenumbers k > 0, With time,

the magnitude of this energy source decreases. At later times, S(k) is positive at small

wavenumbers indicating that it acts as a energy sink at these wavenumbers while still acting

as energy source at higher wavenumbers. At the very final stages of mixing, we speculate

that S(k) would would be negative everywhere, thereby reducing the fluctuations in ¢2 at

all scales.



DNS data vs. Moments-method model. The model for LES filtered scalar dissipa-

tion given in equation (9), adapted from the moment-method model for the mean scalar

dissipation, leads to the following behavior for S(k):

S(k) = Red[C_2(k)¢_'(k)] =
T

Ce)E,2(k) >_ O. (13)
T

According to this model, S(k) is always positive, and, hence, a sink of 43-energy at all

wavenumbers and at all times. This, clearly, is inconsistent with the behavior of S(k)

observed in the DNS. Even at high Reynolds number, there is no reason why the gradient-

squared term cannot transfer $2-energy from large to small scales and, hence, take negative

values at large wavenumbers. Therefore, we conclude that the model for filtered scalar dissi-

pation currently used in literature (equation 9) is inadequate for capturing some important

features of scalar mixing.

2.2 Decomposition of scalar dissipation.

If we use the spectral cut-off filter, the scalar and the velocity fields can be decomposed into

super and subgrid quantities as follows:

{ u_(k,t)_(k, t) = 0

and, similarly,

{ 6(k,t)¢(k, t) = 0

if k _< Ac u' { 0 if k _< Acifk>Ac ; _(k,t)= u_(k,t) ifk>ac

ifk<Ac; . _b'(k, J'0 ifk<Ac
ifk<A_. ' t) = /, q_(k, t) ifk<A_.

Here, A_ is the wavenumber that separates the resolved and unresolved scales and is typically

located in the inertial sub-range. The turbulent velocity field u(k, t) is determined from the

Navier-Stokes equation and the scalar field evolves according to equation (1) with no chemical

reaction.

We seek to model the filtered scalar dissipation

o¢
g,(x) = tto oz _ Ox_ (14)

7



for the caseof spectral cut-off filter. The filtered scalardissipation canbe decomposedinto

three parts asfollows:

= <

0¢ 0¢ 0_b' 0¢' 0¢ 0¢' (15)
= #°Ox_ Ox_ + #°Ox_ Ox_ + 2#°0--_x_ Ox_"

In the above equation (15), the first term on the RHS is the scalar dissipation due to

interactions among the resolved scales. This term is closed in the supergrid variables and no

modeling is required. The second term on the RHS of (15) represents the scalar dissipation

caused by interactions among the unresolved wavenumbers. This term is always positive

and requires closure modeling. The third term on the RHS represents the dissipation due

to interactions between resolved and unresolved scales. This term, which also needs to be

modeled, can be either positive or negative and is responsible for 'backscatter' or energy

transfer (of C-energy) from small to large scales. If a sizable spectral gap exists between the

resolved and unresolved wavenumbers, this term will be negligible. However, the turbulence

spectrum is continuous on either side of the cut-off wavenumber. Analyses of DNS data have

demonstrated that interactions of this type play a major role in spectral energy transfer (Zhou

and Vahala [6]). Therefore, an accurate description of turbulent mixing must incorporate,

as a fundamental building block, this interaction between the resolved and unresolved scales

(Rose [7]).

The roles of the three components of dissipation in the spectral budget of ¢2-energy are

now examined. In particular, the evolutions of S << (k), S ><(k) and S >> (k) -

S<<(k) - $_<(k)q_2"(k) S><(k) -_- 2g_<(k)¢2*(k) S>>(k) -- g_<(k)¢2*(k), (16)

the three components of S(k) corresponding to the three components of dissipation - are

investigated. The results from calculations using DNS data, with Ac = 8, are presented in

figure 3. At early times, S<<(k) is much larger than the other two components. At later



times, the three componentsareof the sameorder of magnitude. In a typical high Reynolds

numberturbulent mixing problemof practical interest, wewouldexpect that S<<(k) would

be much smaller than the other two components. Two other important observations, from

figure 3, which we expect to be valid at high Reynolds number also are: (i) S >> is more

important than S >< at small supergrid wavenumbers; and, (ii) S >< is larger than S >> at

the largest supergrid wavenumbers.

Our objective is to construct models for g_< and E_ > which will lead to the behavior

of S><(k) and S>>(k) consistent with above observations for the supergrid wavenumbers

ao).

3 Model development.

In a high Reynolds number scalar mixing problem with adequate scale separation, most of

the scalar dissipation, g,(k), is due to g_>(k) and it occurs at scales that are much smaller

than the length scale corresponding to the cut-off wavenumber, Ac. On the contrary, Rose [7]

suggests, that most of the contribution towards the back-scatter term, $_<(k < A,), comes

from the interactions between the supergrid and the largest subgrid scales, (wavenumbers

whose magnitude are of the order A,). In figure 4, we present the contributions of various

sub-sets of the subgrid range wavenumbers towards S><(k), calculated using DNS data. It

is clear from the figure that most of the contribution indeed is from scales only slightly larger

than the cut-off wavenumber. In fact, the contribution from wavenumbers larger than 2Ac

is negligible. These observations lead to the following modeling simplifications: only the

near subgrid scales contribute towards g_< (k); and, the only contribution towards ,f_>(k)

are from the far subgrid scales. The two components of dissipation are, then, modeled

separately employing the assumption of a spectral gap in deriving the model for Eg>(k)

only. To facilitate the implementation of this simplification in our model development, we



subdivide the subgrid wavenumbersinto far and near subgridscales:

{ ¢'(k,t) if Ac < k < AN ; . ¢>(k,t)= { 0 if Ac < k < AN¢+(k,t)= 0 ilk>AN. ' ¢'(k,t) ifk>AN.

where, AN (_ 2Ac) is the cut-off between far and near subgrid scales.

3.1 Model for g_>(k).

In terms of these new variables we can write

0¢' 0¢' 0¢> 0¢> (17)
g_> = So Oxa Oxo _ So Ox_ Ox_"

In deriving the model for this term, we assume that the scalar field is composed only of

the supergrid and far subgrid wavenumbers which are separated by a sizable spectral gap.

Clarification of the term 'spectral gap' is called for here. By spectral gap we mean the

gap between the supergrid (energy containing scales) and the scales which contribute most

towards g_> (k). The scales of motion that contribute most towards this dissipation are of

the order of the Kolmogorov length scale. Therefore, the larger the Reynolds number, the

wider is the spectral gap in our definition, and hence, the more valid is the analysis presented

below.

It is known from direct interaction approximation [8] and renormalization group theory

[9] estimates that, if there is spectral gap, then the effect of the small scales on large scales

of motion can be reasonably well accounted for by using a gradient diffusion approximation.

Therefore, the total scalar field evolution equation

0¢ 02¢ (18)0¢ + u_-- = S0 ,
Ot Ox_ Ox_Ox_

on elimination of the subgrid scales leads to the following evolution equation for the filtered

¢ field:

05 055
-_ + u_-_x_ -- ST Ox_Ox_-- " (19)
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In a high Reynoldsnumberflow the turbulent diffusivity/aT ismuchlarger than the molecular

diffusivity/to. In this paper, we are interested in modeling the evolution equation of the

filtered ¢2 field, whosetotal field evolves according to

0¢ 2 0¢ 2 0_¢_ 0¢ 0¢ (20)
0"----[-+ u_ _ = #o OXaOXa 2/a00Xa OX_ "

We propose that, much in the same way that equation (18) on filtering leads to equation

(19), the total ¢2 evolution equation (20) would, on filtering, lead to

-_ _ 0_ o_ o_ o_Ox_ Ox_Oz_
(21)

Comparison of this modeled equation (21) with the exact evolution equation (8) (after setting

w(6) = 0) yields the following. The scalar flux model is

- _ = (/aT -- #o)Oz--_ "_ IJ70x_Oza" (22)

The implied model for filtered dissipation is

06 06 03 0¢ 06 > 0¢ > 0¢ 0¢ (23)

This leads to

06> 06> - (/aT -- #0) 0¢ 0¢ 0¢ 0¢ (24)E:> =_/aoOxoOxo _ o_ _ �aTOxoo_o

The eddy diffusivity coefficient/aT can be obtained using the dynamic subgrid scMe modeling

strategy outlined in [3] or the multiple scale elimination scheme [4], [7].

As mentioned earlier in this subsection, this model for C{ > may not be accurate un-

less there is adequate separation between the supergrid (energy containing) scales and the

dissipation scales (of the order of Kolmogorov scales). Hence, the above model cannot be

expected to perform well for low Reynolds number mixing problems. With complete cog-

nizance of this fact, we compare the model computations of S >> (k) with DNS data in figures

3, using

/a_r = E_>( k = 0) (25)
/ao EU(k = o)"

11



In the model calculations, the function b-_ 0-g_ is of course taken from DNS data. Except

at the final stages of mixing, the model performance is unexpectedly good. The model

appears to capture the wavenumber dependence of the S>>(k) reasonably well. The model

performance can be expected to be better for higher Reynolds number mixing problems of

practical interest.

3.2 Model for

Many of the shortcomings of LES calculations are generally attributed to the poor, or even

lack of, model for the backscatter effect. Derivation of an adequate model for the backscatter

dissipation represents a major thrust of this paper. Before we can model the backscatter

effect of the near subgrid on the supergrid scales, the effect of the far subgrid on the near

subgrid scales must be accounted for. We start with the assumption that the far subgrid

affects the near subgrid in the same way that it affects the supergrid scales. In other words,

the scope of equation (19) is now extended to include the near subgrid scales as well. Clearly,

equation (19) is not as accurate for the near subgrid scales as it is for the supergrid scales,

due to the lack of spectral gap between the near and far subgrid scales. Hence, in assuming

that the near subgrid scales are also governed by the enhanced diffusivity equation, the

backscatter effect between the near and far subgrid is ignored. We argue that, while this

neglection may be of concern if we are attempting to model the near subgrid scales, it may

be unimportant in the modeling of the interaction between the supergrid and near subgrid

scales. Subject to the above simplification, the spectral evolution of the near subgrid scalar

field is given by

where, i = x/Z-i -. All of the effects of the far subgrid scales are accounted for by enhancing

the diffusivity from #0 to #T. From this point, the velocity and the scalar fields are considered

12



as being composedonly of the supergridand near subgrid wavenumbers.Subject to these

assumptionswehave

0¢ 0¢' ,,_ 2p0 0¢ 0¢ + (27)E:<= 2.0 0xo 0xo

In spectral space, E_ < can be written as

Eg< (k) = --2,T(/d3j L(k - j)o¢(k - j)¢+(j)). (28)

At this stage, one has the option of either deriving a modeled evolution equation for

g_'<, or seek an algebraic model. For the sake of simplicity, we will restrict ourselves to

an algebraic expression for _¢_'< closed in terms of the supergrid quantities. Most algebraic

subgrid scale models - e.g., the Smagorinsky model or the dynamic subgrid scale model for

the velocity field - make the implicit assumption that the subgrid scales are in some kind

of an equilibrium with the supergrid field, so that no evolution equation is needed for the

subgrid scales. We make this equilibrium assumption explicitly and employ its implications

to derive the model for g_<.

We start with the assumption that the scalar spectrum of the subgrid scales is in equi-

librium with the large scales:

dEc(k) _ 2T¢(k) - 2,Tk2¢(k)¢*(k) _ O, for A¢ > k > AN. (29)
dt

In the above, summation is performed over all vector wavenumbers of a given magnitude.

(Again following Rose [7], we treat the near subgrid scales as nearly isotropic, even if the

supergrid scales are not.) The scalar energy transfer into a wavenumber k due triadic

interactions between the velocity and the scalar fields, denoted by T¢(k), has the following

form:

T_(k) = Real[-ik_,f d3ju_(k-j)¢(j) ¢+*(k)]. (30)

The scalar energy dissipated in wavenumber k is De(k) = -2#Tk2¢(k)¢*(k). The simplifying

assumption in equation (29) is now verified using DNS data. In figure 5, we plot Tc_(k) and

13



De(k) for the subgrid wavenumbers (k > Ac - 12) at various stages of scalar field decay.

At initial times, T_(k) is slightly larger than D_(k) indicating the build up of energy in the

near subgrid scales. At later times, due to the decay of the spectra at all wavenumbers,

De(k) is slightly larger than T¢(k). However, throughout the mixing process, the difference

between D,(k) and T¢(k) is much smaller than their absolute magnitude confirming that

the simplification in equation (30) is quite reasonable.

Based on the observation that De(k) _ T¢(k), we suggest that, in an average sense, there

is balance at each wavenumber vector: that is,

De(k)

#Tk2[¢ +(k)]¢+*(k)

T¢(k)

.._ Real[-iko f daju,_(k - j)¢(j)¢+*(k)].
a

(31)

If the above assertion is true, then we must have

¢+(k, t) - 1 [-ik_, f d3ju_(k - j, t)¢(j, t) + C0¢ + (k, t)], (32)
_T k2

where, Co is a constant and ¢+(k) is such that

¢+(k, t)¢+'(k,t) = 0. (33)

Substituting equation (32) into the expression for £_'< (k)in equation (28) we get

g_<(k) = --2.T(f d'j j,(k- j),¢(k- j)T--_[-ifi f d3j'ub(j- j')¢(j')÷Co¢ +(j)]034)
• .

: 2(/i d3jd'j'(_ )j.(k -j).¢(k- j)ub(j- j')¢(j'))

-2co(f d'jj.(k - j).(_)$(k - j)¢+ (j)).

In the above equation, the integration over j is restricted to subgrid wavenumbers, whereas,

the integration over j' is over all wavenumbers. Considering that the subgrid now consists

only of a narrow band of scales, we propose that, to leading order,

$(k - j)ub(j- j')¢(j')) (35)(/ f d3jd3j'A(k -

(f f d_jd'j'j.(k- j).(_.-_)¢(k-j)_b(j- j')¢(j')).

14



After this truncation to the leading order term, the only remaining unclosed term in the

model for g'_< is the one containing ¢+. Calculations of this term from DNS data (result

not shown) appear to indicate that it is not small in magnitude compared to the other term

(equation 32) in the model expression for _'_'<. However, we know from equation (33) that

this term does not affect the level of the scalar energy. Since our main interest in g'_< is to

be able to calculate the level of scalar energy of the supergrid (¢2) correctly, we suggest that

the term containing ¢+ be dropped from the model expression. In other words, we suggest

that exclusion of this unclosed term would still lead to the correct behavior of the ultimately

important quantity S><(k) (see equation 16 for definition), even if the behavior of g_<(k)

itself may not be quite correct. The extent of validity of this exclusion will be borne out

when the model calculations of S><(k) are compared against DNS data.

The expression for g_< (k) (equation 34)can now be approximated as (the angular brack-

ets indicating averaging are dropped because only the supergrid quantities survive our sim-

plification)

2/d3jd3j,( k .) ..=.ijb_ . .,E:<(k) -3._3_(s,)ub(j -j, t)¢(j', t)$(k, -
j,t). (36)

The above equation represents a closure model for the backscatter dissipation in spectral

space. Most of the LES computations are performed in physical space, and, therefore, a

closure model in physical space would be very useful. Inverse Fourier transformation of

equation (36) would lead to an expression that involves Greens integral over space, and,

hence, not local in space. The non-locality of the closure model for £_< will preclude it from

being useful in LES computations of high Reynolds number flows of complex geometry.

A model local that is local in physical space can be obtained if we assume that the contri-

bution towards g_< comes only from a thin shell of subgrid wavenumbers, an approximation

that is justified by the finding in figure 4. Then, in equation (36) we can set ]Jl "_ Ac (recall
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that the dummy wavenumberj is restricted to near subgrid scales), leading to

2

£_'< (k) ._ _ ] d3jdZj'(k - j):j_(ijb)fib(j -j',t)¢(j',t)_)(k - j, t).
(37)

By performing a convolution integral over j' (which is over the entire wavenumber domain),

we get

g_'<(k) - 2 /d3j(k_j)_j_(ijb)[_](j,t)_(k_j,t) (38)A_
2

The integration over j (subgrid scales only) can be split into two parts

d 3" 02f_"_b¢"',t'_-_--'k - _--- 01¢ (k-j,t)

-- .0¢ k

(39)

Each integration can now be separately evaluated:

.3.02_b_; .... 0¢ (k
_ot_ a J o_U,U-_x _ -j,t)

02ub8 O¢(k
L_pe,g_ia daj Ox---_b (j't)0x_ -j,t)

= [ 0_fib¢ 0_x ](k) (40)0x-:_b

3. 02f_b¢ .0¢ k [ 02f_b¢ O_](k,t).= ]_o,_a 30V:-_ (J,t)gi-:x(-j,t) = _

Therefore, the exact inverse transform of equation (38) yields,

2 0_; 0_$ 0_b3 l
E2<(_)- ,_[_ 0V:-0_

(41)

The parameter Ac can be expressed in terms of the mechanical dissipation rate (g) and the

kinetic energy (It') of the subgrid scales (e.g., Rubinstein and Barton [10], Zhou et al. [11]):

c_ (3Ck/2) 3/2 (42)
Ac- K312

where Ck is the Kolmogorov constant. To obtain the relations in equation (42), the velocity

field is assumed to be stationary and the small scale autocorrelation is taken to be determined

16



by the Kolmogorovspectrum. After substituting Acfrom equation(42), the modelexpression

for _'_< in terms of the subgrid turbulent velocity field variablesis givenby

E_<(x) =-C_ < I(3 0¢[ o:_b_ O2fib¢ ] (43)
E GZo Ox Ozb"

where C_ < is independent of the wavenumber.

We now compare our model against DNS data. We reiterate that the main emphasis of

the modeling effort is to be able to calculate the correct spectral behavior of the supergrid

component of ¢2 which evolves according to equation (8). To examine if the proposed

model accomplishes the stated objective, we compare the model calculation with DNS for

the quantity S><(k) - g_<¢2*(k) in figure 6. The comparison is performed at four different

stages of the mixing process with Ac = 12; Cg < is taken to be that numerical value which

gives the best agreement at each time. The model agrees very well with DNS data, especially

at, early times. As required, the model appears to capture the wavenumber dependence

of S(k) very well. The modeling is complete except for the specification of C_ '< which

determines only the overall level of S(Ic) and not its spectral character. The determination

of C_ "< is deferred to a future effort.

4 Conclusion.

In this paper, we first study the behavior of filtered scalar dissipation - arising in LES

modeling of turbulent scalar mixing - with the help of DNS data. Then, we employ the

insight gained to develop a model expression for the filtered scalar dissipation. It is found

that its accurate modeling requires that two physical phenomena be accounted for: (i)

the dissipation due to interaction among the subgrid scales, denoted by C_>; and, (ii) the

dissipation due to the interaction between the resolved and unresolved scales, given by C_ <.

Arguing that the dominant contribution towards C_ > comes from the interaction among

far-field subgrid wavenumbers, we introduce an artificial spectral gap in the derivation of the
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model for this term. The model for _'_> turns out to be an enhancedmolecular diffusion

type term, as it should be in the distant interaction approximation limit. Although the

assumptionsleadingto this modelarevalid only for high Reynoldsnumberturbulent mixing,

comparisonwith low ReynoldsnumberDNS data showssurprisingly adequateperformance

by the model.

It is also demonstratedusing DNS data that most contribution to the 'backscatter'-

dissipation, E_ <, comes from a narrow band of subgrid wavenumbers only slightly larger

than the largest supergrid wavenumber. After establishing that the scalar spectrum of this

near subgrid wavenumber band is in quasi-equilibrium with the large (supergrid) scales, we

derive the model for $2 < in its most accurate form in the spectral space. Inverse transform

into physical space leads to a non-local model, which in large scale LES calculations, could

lead to excessive computational requirements. A less accurate, but computationally more

feasible, model for this term that is local in physical space is derived by assuming that only

a thin shell of wavenumbers contribute towards the 'backscatter'. Comparison of this model

with DNS data shows good agreement.

The present model appears to be a clear improvement over the previously used model

for filtered scalar dissipation. The previous model, which is a literal extension of the model

for the statistical average of scalar dissipation used in moment methods, makes no use of

the additional information about the supergrid scalar field available in a LES computation.

The present model makes use of the additional supergrid scalar field information available,

leading to a more accurate model. Owing to the reasonably sound theoretical foundation

of the new model, coupled with its demonstrated ability to capture important features of

DNS mixing data, we expect that the model derived in this paper would be very useful for

accurate LES computations of scalar mixing and reaction.
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